
Optimal Allocations with CARA and CRRA

John Hey and Noemi Pace

April 27, 2012



1 Introduction

In this paper we have assumed two particular forms for the utility function of the

subjects: 1) a Constant Absolute Risk Aversion (CARA) form and 2) a Constant Relative

Risk Aversion (CRRA) form.

1) We took this to be the CARA form:

u(x) =
1� exp(�rx)
1� exp(�75r)

if r 6= 0

=
x

75
if r = 0

In this case we maximise a function of the form

wju(ejxj) + wku(ekxk)

subject to the constraint that xj+ xk = m. Given the CARA form the general optimal

allocations are

x�j =
ekm+ fln[(wjej)/(wkek)]g/r

ej + ek

x�k =
ejm+ fln[(wkek)/(wjej)]g/r

ej + ek

We note that there is no guarantee that the x’s are positive and less than m. In the

experiment subjects were constrained to have all allocations non-negative and we took

that into account in the estimation.

2)We took this to be the CRRA form:

u(x) =
x1�1/r � 1

1� 1/r
if r 6= 1

= ln(x) if r = 1

1



In this case we maximise a function of the form

w1u(e1x1) + w2u(e2x2)

subject to the constraint that x1+ x2 = 1. Given the CRRA form the general optimal

allocations are

x�j =
qj

qj + qk

where qi = er�1
i wr

i for i = 1, 2.

In the following sections we will provide a description of the optimal allocations

for the different preference functionals in both utility forms.

2 Experimental Design

In the experiment there are two types of problem: problems of Type 1 and problems of

Type 2. In problems of Type 1 subjects were asked to allocate tokens between 2 colours

(with the exchange rate on the third being zero). In problems of Type 2 subjects were

asked to allocate tokens between one colour and the other two.

Specifically:

Problem type 11: allocation between 2 and 3

Problem type 12: allocation between 1 and 3

Problem type 13: allocation between 1 and 2

Problem type 21: allocation between 1 and (2 and 3)

Problem type 22: allocation between 2 and (1 and 3)

Problem type 23: allocation between 3 and (1 and 2)

3 Optimisations with CARA function

3.1 Optimal allocations with SEU subjects

In EU the ordering of the outcomes does not matter.
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3.1.1 Type 1 problems

We need some notation. Let us say that in Problem type 1i the choice is between colours

j and k. We note:

i 1 2 3

j 2 3 1

k 3 1 2
Then the allocation is between colours j and k. If colour i comes up the subject re-

ceives nothing. So the problem is to choose xj and xk to maximise pju(ejxj) + pku(ekxk)

st xj + xk = m

From the general results above we have:

x�j =
ekm+ fln[(pjej)/(pkek)]g/r

ej + ek
(1)

x�k =
ejm+ fln[(pkek)/(pjej)]g/r

ej + ek

Here the p’s are simply the probabilities of the three colours and e’s are the un-

ordered exchange rates.

3.1.2 Type 2 Problems

In Problem Type 2i, the choice is between i and not-i, the subject allocates xi to colour

i and Xi to not-i, then if colour i is drawn the subject receives eixi whereas if the colour

drawn is not-i then the subject receives EiXi. Here Ei denotes the exchange rate be-

tween not-i and money.

Using the above results we have that in the Problem type 2i:

x�i =
Eim+ fln[(piei)/(PiEi)]g/r

ei + Ei
(2)

X�i =
eim+ fln[(PiEi)/(piei)]g/r

ei + Ei

where Ei is the exchange rate between allocations to not-i and money and where P1 =

p2 + p3, P2 = p3 + p1, and P3 = p1 + p2.
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3.2 Optimal allocations with CEU subjects

For CEU subjects the order matters. A CEU subject is defined by six capacities. Let us

denote these by the variables v and V as follows. v1 is the capacity on colour 1, v2 is

the capacity on colour 2, v3 is the capacity on colour 3; V1 is the capacity on colours 2

and 3 combined, V2 is the capacity on colours 1 and 3 combined, V3 is the capacity on

colours 1 and 2 combined.

3.2.1 Type 1 problems

Using the CEU formulation it follows that the v’s in the objective function equation ??

are defined as follows:

Problem type i j k weight on j if ejxj > ekxk weight on k if ejxj > ekxk

11 1 2 3 v2 V1 � v2

12 2 3 1 v3 V2 � v3

13 3 1 2 v1 V3 � v1

1i i j k vj Vi � vj

Problem type i j k weight on j if ejxj < ekxk weight on k if ejxj < ekxk

11 1 2 3 V1 � v3 v3

12 2 3 1 V2 � v1 v1

13 3 1 2 V3 � v2 v2

1i i j k Vi � vk vk

We need to consider three possibilities.

Possibility 1: ejxj > ekxk We apply the general result.

We have:

x�j =
ekm+ fln[(vjej)/((Vi � vj)ek)]g/r

ej + ek
(3)

x�k =
ejm+ fln[((Vi � vj)ek)/(vjej)]g/r

ej + ek
(4)

We note that the condition for this possibility to be satisfied is that vjej > (Vi � vj)ek.
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Possibility 2: ejxj < ekxk We have:

x�j =
ekm+ fln[(Vi � vk)ej)/(vkek)]g/r

ej + ek

x�k =
ejm+ fln[(vkek)/((Vi � vk)ej)]g/r

ej + ek

We note that the condition for this possibility to be satisfied is that (Vi � vk)ej >

vkek. Note that if Possibility 1 and Possibility 2 are both possible, we still need to check

which gives the highest utility.

Possibility 3: ejxj = ekxk We must have

x�j =
ekm

ej + ek
and x�k =

ejm
ej + ek

Note that this solution in always admissible.

3.2.2 Type 2 problems

Let us consider the general Problem type 2i, that is, allocations between i and not-i:

There are three possibilites:

Possibility 1: eixi > Ei(1� xi) = EiXi

Possibility 2: eixi < Ei(1� xi) = EiXi

Possibility 3: eixi = Ei(1� xi) = EiXi

Here the notation Ei means the exchange rate on not-i.

Problem type i not-i weight on i if eixi > EiXi weight on not-i if eixi > EiXi

21 1 2 and 3 v1 1� v1

22 2 3 and 1 v2 1� v2

23 3 1 and 2 v3 1� v3

2i i j and k vi 1� vi
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Problem type i not-i weight on i if eixi < EiXi weight on not-i if eixi < EiXi

21 1 2 and 3 1�V1 V1

22 2 3 and 1 1�V2 V2

23 3 1 and 2 1�V3 V3

2i i j and k 1�Vi Vi

We need to consider the 3 possibilites:

Possibility 1: eixi > EiXi This has strict inequalities and we can apply general results.

We have:

x�i =
Eim+ fln[(viei)/((1� vi)Ei)]g/r

ei + Ei

X�i =
eim+ fln[(1� vi)Ei)/(viei)]g/r

ei + Ei

We note that the condition for this possibility to be satisfied is that viei > (1� vi)Ei.

Possibility 2: eixi < Eixi We have:

x�i =
Eim+ fln[((1�Vi)ei)/(ViEi)]g/r

ei + Ei

X�i =
eim+ fln[(ViEi)/((1�Vi)ei)]g/r

ei + Ei

We note that the condition for this possibility to be satisfied is that (1�Vi)ei > ViEi.

Possibility 3: eixi = EiXi We have:

x�i =
Eim

ei + Ei
and X�i =

eim
ei + Ei

Note that this solution in always admissible.
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3.3 Optimal allocations with AEU subjects

Suppose now that the subject is AEU maximizer. This is defined by three probability

bounds and the alpha parameter.Let us define the bounds on the convex set of possible

probabilites by v1, v2, v3. These three numbers characterise the model. Assume that

they add up to less than 1 (if they add up to 1 then AEU reduces to SEU). They bound

a triangular area in the Marshack-Machina-Triangle.

As in the other cases the objective function is given by ??. The crucial point is the

values of the weights. Using our standard notation, where the ordered v’s we have

AEU = α[w1u(e1x1) + w2u(e2x2) + (1� w1 � w2)u(e3x3)] + (5)

(1� α)[(1� w2 � w3)u(e1x1) + w2u(e2x2) + w3u(e3x3)]

This can be written as

AEU = [αw1 + (1� α)(1� w2 � w3)]u(e1x1) + w2u(e2x2) + (6)

[α(1� w1 � w2) + (1� α)w3]u(e3x3)]

We note that this is exactly like the SEU case but with probabilities [αw1 + (1� α)(1�

w2�w3)], w2 and [α(1�w1�w2) + (1� α)w3] on the three outcomes. Note that these

add to 1, so we can apply our standard results. But note the idiosyncracy of AEU:
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these ’probabilities’ depend upon the ordering. Following the same notation as the

CEU case, we have:

v1 = αw1 + (1� α)(1� w2 � w3) (7)

v2 = w2 (8)

v3 = α(1� w1 � w2) + (1� α)w3

We need to consider all the possible cases.

3.3.1 Type 1 problems

To save some writing let us introduce the notation Vi to refer to the sum of the v’s

for not-i. That is, V1 = v2 + v3, V2 = v1 + v3 and V3 = v1 + v2. Or more generally

Vi = vj + vk.

If problem type is 1i then

if ejxj > ekxk weight on xj is αvj + (1� α)(1�Vj) and weight on xk is vk

if ejxj < ekxk weight on xj is vj and weight on xk is αvk + (1� α)(1�Vk)

Problem type i j k weight on j if ejxj > ekxk weight on k if ejxj > ekxk

11 1 2 3 αv2 + (1� α)(1�V2) v3

12 2 3 1 αv3 + (1� α)(1�V3) v1

13 3 1 2 αv1 + (1� α)(1�V1) v2

1i i j k αvj + (1� α)(1�Vj) vk

Problem type i j k weight on j if ejxj < ekxk weight on k if ejxj < ekxk

11 1 2 3 v2 αv3 + (1� α)(1�V3)

12 2 3 1 v3 αv1 + (1� α)(1�V1)

13 3 1 2 v1 αv2 + (1� α)(1�V2)

1i i j k vj αvk + (1� α)(1�Vk)

We need to consider the three possibilities.
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Possibility 1: ejxj > ekxk We have:

x�j =
ekm+ fln[((αvj + (1� α)(1�Vj))ej)/(vkek)]g/r

ej + ek
(9)

x�k =
ejm+ fln[(vkek)/((αvj + (1� α)(1�Vj))ej)]g/r

ej + ek
(10)

We note that the condition for this possibility to be satisfied is that ej[αvj + (1� α)(1�

Vj)] > ekvk.

Possibility 2: ejxj < ekxk We have:

x�j =
ekm+ fln[(vjej)/((αvk + (1� α)(1�Vk))ek)]g/r

ej + ek
(11)

x�k =
ejm+ fln[((αvk + (1� α)(1�Vk))ek)/(vjej)]g/r

ej + ek
(12)

We note that the condition for this possibility to be satisfied is that ek[αvk+ (1� α)(1�

Vk)] > ejvj. Again it does not appear that this can be simplified.

Possibility 3: ejxj = ekxk We must have

x�j =
ekm

ej + ek
and x�k =

ejm
ej + ek

Note that this solution in always admissible.

3.3.2 Type 2 problems

Let us consider the general case i, that is, allocations between i and not-i.

Problem type i not-i weight on i if eixi > EiXi weight on not-i if eixi > EiXi

21 1 2 and 3 αv1 + (1� α)(1�V1) α(1� v1) + (1� α)V1

22 2 3 and 1 αv2 + (1� α)(1�V2) α(1� v2) + (1� α)V2

23 3 1 and 2 αv3 + (1� α)(1�V3) α(1� v3) + (1� α)V3

2i i j and k αvi + (1� α)(1�Vi) α(1� vi) + (1� α)Vi
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Problem type i not-i weight on i if eixi < EiXi weight on not-i if eixi < EiXi

21 1 2 and 3 α(1�V1) + (1� α)v1 αV1 + (1� α)(1� v1)

22 2 3 and 1 α(1�V2) + (1� α)v2 αV2 + (1� α)(1� v2)

23 3 1 and 2 α(1�V3) + (1� α)v3 αV3 + (1� α)(1� v3)

2i i j and k α(1�Vi) + (1� α)vi αVi + (1� α)(1� vi)

We need to consider the three possibilities.

Possibility 1: eixi > EiXi. Here the weights on xi is αvi + (1 � α)(1 � Vi) and the

weight on Xi is α(1� vi) + (1� α)Vi.

In this case, the optimal allocations are

x�i =
Eim+ fln[((αvi + (1� α)(1�Vi))ei)/(α(1� vi) + (1� α)Vi)Ei)]g/r

ei + Ei

X�i =
eim+ fln[(α(1� vi) + (1� α)Vi)Ei)/((αvi + (1� α)(1�Vi))ei)]g/r

ei + Ei

We need that eix�i > Ei(1� x�i ). This gives us the condition that [αvi + (1� α)(1�

Vi)]ei > [α(1� vi) + (1� α)Vi]Ei.

Possibility 2: eixi < EiXi Here the weight on xi is α(1�Vi)+ (1� α)vi and the weight

on Xi is αVi + (1� α)(1� vi).

In this case, the optimal allocations are

x�i =
Eim+ fln[((α(1�Vi) + (1� α)vi)ei)/((αVi + (1� α)(1� vi))Ei)]g/r

ei + Ei

X�i =
eim+ fln[((αVi + (1� α)(1� vi))Ei)/((α(1�Vi) + (1� α)vi)ei)]g/r

ei + Ei

Following the logic as above we need that [αVi + (1� α)(1� vi)]Ei > [α(1�Vi) +

(1� α)vi]ei.

Possibility 3: eixi = EiXi We must have
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x�i =
Eim

ei + Ei
and X�i =

eim
ei + Ei

Note that this solution in always admissible.

3.4 Optimal allocations with VEU subjects

Suppose now that the subject is VEU maximizer. Such a subject is defined by three

”adjusted” probabilities that incorporate the ambiguity about the relative number of

pairs of colours (i.e., ambiguity about the relative number of colour 1 versus colour 2

balls and the ambiguity about the relative number of colour 2 versus colour 3 balls).

These adjusted probabilities are defined as the baseline prior probability plus or minus

the adjustment for ambiguity.

Let us denote the baseline prior probabilities by vi as follows: v1 is the baseline

probability on colour 1, v2 is the baseline probability on colour 2, v3 is the baseline

probability on colour 3. We define by wi the corresponding ordered baseline prior prob-

abilities. So we have

vi = wbac(c,i) for i = 1, 2, 3 or wi = vord(c,i) for i = 1, 2, 3 and c = 1, ..., 6.

Let us write eq. (??) in terms of the ordered baseline prior probabilities

VEU = w1u(e1x1)+w2u(e2x2)+w3u(e3x3)� δ(ju(e1x1)�u(e2x2)j+ ju(e2x2)�u(e3x3)j)

(13)

Since we are considering an ordering, we can ignore the modulus. The (35) becomes

VEU = (w1 � δ)u(e1x1) + w2u(e2x2) + (w3 + δ)u(e3x3) (14)

Now we can easily define the ”adjusted” probabilities and, for analogy to the AEU

case, we define them by v.

v1 = w1 � δ

v2 = w2 (15)

v3 = w3 + δ
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Note that both the baseline prior probabilities and the ”adjusted” probabilities sum up

to one.

3.4.1 Type 1 problems

We follow the same notation of AEU. We refer to Vi as the sum of the v’s for not-i. That

is, V1 = v2 + v3, V2 = v1 + v3 and V3 = v1 + v2. Or more generally Vi = vj + vk. If

problem type is 1i then

Problem type i j k weight on j if ejxj > ekxk weight on k if ejxj > ekxk

11 1 2 3 v2 � δ v3

12 2 3 1 v3 � δ v1

13 3 1 2 v1 � δ v2

1i i j k vj � δ vk

Problem type i j k weight on j if ejxj < ekxk weight on k if ejxj < ekxk

11 1 2 3 v2 v3 � δ

12 2 3 1 v3 v1 � δ

13 3 1 2 v1 v2 � δ

1i i j k vj vk � δ

We need to consider the three possibilities.

Possibility 1: ejxj > ekxk We have

x�j =
ekm+ fln[((vj � δ)ej)/(vkek)]g/r

ej + ek
(16)

x�k =
ejm+ fln[(vkek)/((vj � δ)ej)]g/r

ej + ek
(17)

We note that the condition for this possibility to be satisfied is that ej(vj� δ) > ekvk.

Possibility 2: ejxj < ekxk We have

x�j =
ekm+ fln[(vjej)/((vk � δ)ek)]g/r

ej + ek
(18)

x�k =
ejm+ fln[((vk � δ)ek)/(vjej)]g/r

ej + ek
(19)
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We note that the condition for this possibility to be satisfied is that ek(vk� δ) > ejvj.

Possibility 3: ejxj = ekxk We have

x�i =
Eim

ei + Ei
and x�k =

eim
ei + Ei

Note that this solution in always admissible.

3.4.2 Type 2 problems

Let us consider the general case i, that is, allocations between i and not-i:

There are three possibilities:

Possibilty 1: eixi > Ei(1� xi) = EiXi

Possibility 2: eixi < Ei(1� xi) = EiXi

Possibility 3: eixi = Ei(1� xi) = EiXi

Problem type i not-i weight on i if eixi > EiXi weight on not-i if eixi > EiXi

21 1 2 and 3 ν1 � δ 1� ν1 + δ

22 2 3 and 1 ν2 � δ 1� ν2 + δ

23 3 1 and 2 ν3 � δ 1� ν3 + δ

2i i j and k νi � δ 1� νi + δ

Problem type i not-i weight on i if eixi < EiXi weight on not-i if eixi < EiXi

21 1 2 and 3 1�V1 + δ V1 � δ

22 2 3 and 1 1�V2 + δ V2 � δ

23 3 1 and 2 1�V3 + δ V3 � δ

2i i j and k 1�Vi + δ Vi � δ

We need to consider the three possibilities.

Possibility 1: eixi > EiXi Here the weights on xi is (νi � δ) and the weight on Xi is

(1� νi + δ)

The optimal allocations are:

13



x�i =
Eim+ fln[((νi � δ)ei)/((1� νi + δ)Ei)]g/r

ei + Ei

X�i =
eim+ fln[((1� νi + δ)Ei)/((νi � δ)ei)]g/r

ei + Ei

We note that the condition for this possibility to be satisfied is that (νi � δ)ei > (1�

νi + δ)Ei.

Possibility 2: eixi < EiXi Here the weights on xi is (1�Vi + δ) and the weight on Xi

is (Vi � δ)

The optimal allocations are:

x�i =
Eim+ fln[((1�Vi + δ)ei)/((Vi � δ)Ei)]g/r

ei + Ei

X�i =
eim+ fln[((Vi � δ)Ei)/((1�Vi + δ)ei)]g/r

ei + Ei

We note that the condition for this possibility to be satisfied is that (1� Vi + δ)ei <

(Vi � δ)Ei.

Possibility 3: eixi = EiXi We have

x�i =
Eim

ei + Ei
and X�i =

eim
ei + Ei

Note that this solution in always admissible.

3.5 Optimal allocations with Contraction Model

Suppose now that a subject has preferences described by the Contraction Model. The

preference functional depends crucially on the ordering between u(e1x1), u(e2x2), and

u(e3x3).
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Suppose that u(e1x1) � u(e2x2) � u(e3x3). We have that

COM = α[p
1
u(e1x1) + p

2
u(e2x2) + (1� p

1
� p

2
)u3] + (1� α)[(p

1
+ (1� p

1
� p

2
� p

3
)/3)u(e1x1) +

(p
2
+ (1� p

1
� p

2
� p

3
)/3)u(e2x2) + (p3

+ (1� p
1
� p

2
� p

3
)/3)u(e3x3)]

This looks very similar to SEU with probabilities/weights which depend on the

bounds and alpha and which is the bigger outcome.

This can be written as

COM = [αp
1
+ (1� α)(p

1
+ (1� p

1
� p

2
� p

3
)/3)]u(e1x1) + (20)

[αp
2
+ (1� α)(p

2
+ (1� p

1
� p

2
� p

3
)/3)]u(e2x2) +

[α(1� p
1
� p

2
) + (1� α)(p

3
+ (1� p

1
� p

2
� p

3
)/3)]u(e3x3)

The probabilities on the three outcomes are [αp
1
+(1� α)(p

1
+(1� p

1
� p

2
� p

3
)/3)], [αp

2
+

(1� α)(p
2
+ (1� p

1
� p

2
� p

3
)/3)] and [α(1� p

1
� p

2
) + (1� α)(p

2
+ (1� p

1
� p

2
�

p
3
)/3)]. Note that these add to 1, so we can apply our standard results. But note that

these ’probabilities’ depend upon the ordering. Following the same notation as the

CEU and AEU case, we have:

v1 = αp
1
+ (1� α)(p

1
+ (1� p

1
� p

2
� p

3
)/3) (21)

v2 = αp
2
+ (1� α)(p

2
+ (1� p

1
� p

2
� p

3
)/3) (22)

v3 = α(1� p
1
� p

2
) + (1� α)(p

3
+ (1� p

1
� p

2
� p

3
)/3)

Again we need to consider all the possible cases.

3.5.1 Type 1 problems

If problem type is 1i then

if ejxj > ekxk weight on xj is and weight on xk is

if ejxj < ekxk weight on xj is and weight on xk is.
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Problem type i j k weight on j if ejxj > ekxk weight on k if ejxj > ekxk

11 1 2 3 αp
2
+ (1� α)

�1+2p
2
�p

3
3

�
α(1� p

2
) + (1� α)

� 1+2p
3
�p

2
3

�
12 2 3 1 αp

3
+ (1� α)

�1+2p
3
�p

1
3

�
α(1� p

3
) + (1� α)

� 1+2p
1
�p

3
3

�
13 3 1 2 αp

1
+ (1� α)

�1+2p
1
�p

2
3

�
α(1� p

1
) + (1� α)

� 1+2p
2
�p

1
3

�
1i i j k αp

j
+ (1� α)

�
1+2p

j
�p

k
3

�
α(1� p

j
) + (1� α)

�
1+2p

k
�p

j
3

�
Problem type i j k weight on j if ejxj < ekxk weight on k if ejxj < ekxk

11 1 2 3 α(1� p
3
) + (1� α)

�1+2p
2
�p

3
3

�
αp

3
+ (1� α)

�1+2p
3
�p

2
3

�
12 2 3 1 α(1� p

1
) + (1� α)

�1+2p
3
�p

1
3

�
αp

1
+ (1� α)

�1+2p
1
�p

3
3

�
13 3 1 2 α(1� p

2
) + (1� α)

�1+2p
1
�p

2
3

�
αp

2
+ (1� α)

�1+2p
2
�p

1
3

�
1i i j k α(1� p

k
) + (1� α)

�
1+2p

j
�p

k
3

�
αp

k
+ (1� α)

�
1+2p

k
�p

j
3

�
We need to consider the three possibilities.

Possibility 1: ejxj > ekxk We have:

x�j =

ekm+ fln[(αp
j
+ (1� α)

�
1+2p

j
�p

k
3

�
)ej/(α(1� p

j
) + (1� α)

�
1+2p

k
�p

j
3

�
)ek)]g/r

ej + ek

x�k =

ejm+ fln[(α(1� p
j
) + (1� α)

�
1+2p

k
�p

j
3

�
)ek/(αp

j
+ (1� α)

�
1+2p

j
�p

k
3

�
)ej)]g/r

ej + ek

We note that the condition for this possibility to be satisfied is that ej[αp
j
+ (1 �

α)

�
1+2p

j
�p

k
3

�
] > ek[α(1� p

j
) + (1� α)

�
1+2p

k
�p

j
3

�
)].

Possibility 2: ejxj < ekxk We have:

x�j =

ekm+ fln[(α(1� p
k
) + (1� α)

�
1+2p

j
�p

k
3

�
)ej/(αp

k
+ (1� α)

�
1+2p

k
�p

j
3

�
)ek]g/r

ej + ek
(23)

x�k =

ejm+ fln[(αp
k
+ (1� α)

�
1+2p

k
�p

j
3

�
)ek/(α(1� p

k
) + (1� α)

�
1+2p

j
�p

k
3

�
)ej]g/r

ej + ek
(24)

We note that the condition for this possibility to be satisfied is that ek[αp
k
+ (1�

α)

�
1+2p

k
�p

j
3

�
] > ej[α(1� p

k
) + (1� α)

�
1+2p

j
�p

k
3

�
].
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Possibility 3: ejxj = ekxk We must have

x�j =
ekm

ej + ek
and x�k =

ejm
ej + ek

Note that this solution in always admissible.

3.5.2 Type 2 problems

Let us consider the general case i, that is, allocations between i and not-i.

To save some writing let us introduce the notation Pi to refer to the sum of the p’s

for not-i. That is, P1 = p
2
+ p

3
, P2 = p

1
+ p

3
and P3 = p

1
+ p

2
. Or more generally

Pi = p
j
+ p

k
.

There are three possibilities:

Possibilty 1: eixi > Ei(1� xi) = EiXi

Possibility 2: eixi < Ei(1� xi) = EiXi

Possibility 3: eixi = Ei(1� xi) = EiXi

Problem type i not-i weight on i if eixi > EiXi weight on not-i if eixi > EiXi

21 1 2 and 3 αp
1
+ (1� α)(

1+p
1
�P1

2 ) α(1� p
1
) + (1� α)(

1�p
1
+P1

2 )

22 2 3 and 1 αp
2
+ (1� α)(

1+p
2
�P2

2 ) α(1� p
2
) + (1� α)(

1�p
2
+P2

2 )

23 3 1 and 2 αp
3
+ (1� α)(

1+p
3
�P3

2 ) α(1� p
3
) + (1� α)(

1�p
3
+P3

2 )

2i i j and k αp
i
+ (1� α)(

1+p
i
�Pi

2 ) α(1� p
i
) + (1� α)(

1�p
i
+Pi

2 )

Problem type i not-i weight on i if eixi < EiXi weight on not-i if eixi < EiXi

21 1 2 and 3 α(1� P1) + (1� α)(
1+p

1
�P1

2 ) αP1 + (1� α)(
1�p

1
+P1

2 )

22 2 3 and 1 α(1� P2) + (1� α)(
1+p

2
�P2

2 ) αP2 + (1� α)(
1�p

2
+P2

2 )

23 3 1 and 2 α(1� P3) + (1� α)(
1+p

3
�P3

2 ) αP3 + (1� α)(
1�p

3
+P3

2 )

2i i j and k α(1� Pi) + (1� α)(
1+p

i
�Pi

2 ) αPi + (1� α)(
1�p

i
+Pi

2 )

We need to consider the three possibilities

Possibility 1: eixi > EiXi Here the weights on xi is αp
i
+ (1� α)(

1+p
i
�Pi

2 ) and the

weight on Xi is α(1� p
i
) + (1� α)(

1�p
i
+Pi

2 )

The optimal allocations are:
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x�i =
Eim+ fln[(αp

i
+ (1� α)(

1+p
i
�Pi

2 ))ei/(α(1� p
i
) + (1� α)(

1�p
i
+Pi

2 ))Ei]g/r

ei + Ei

X�i =
eim+ fln[(α(1� p

i
) + (1� α)(

1�p
i
+Pi

2 ))Ei/(αp
i
+ (1� α)(

1+p
i
�Pi

2 ))ei]g/r

ei + Ei

We note that the condition for this possibility to be satisfied is that [αp
i
+(1� α)(

1+p
i
�Pi

2 )]ei >

[α(1� p
i
) + (1� α)(

1�p
i
+Pi

2 )]Ei.

Possibility 2: eixi < EiXi Here the weights on xi is α(1� Pi) + (1� α)(
1+p

i
�Pi

2 ) and

the weight on Xi is αPi + (1� α)(
1�p

i
+Pi

2 ).

The optimal allocations are:

x�i =
Eim+ fln[(α(1� Pi) + (1� α)(

1+p
i
�Pi

2 ))ei/(αPi + (1� α)(
1�p

i
+Pi

2 ))Ei]g/r
ei + Ei

X�i =
eim+ fln[(αPi + (1� α)(

1�p
i
+Pi

2 ))Ei/(α(1� Pi) + (1� α)(
1+p

i
�Pi

2 ))ei]g/r
ei + Ei

We note that the condition for this possibility to be satisfied is that [α(1� Pi) + (1�

α)(
1+p

i
�Pi

2 )]ei < [αPi + (1� α)(
1�p

i
+Pi

2 )]Ei.

Possibility 3: eixi = EiXi We have

x�i =
Eim

ei + Ei
and X�i =

eim
ei + Ei

Note that this solution in always admissible.

4 Optimisations with CRRA function

4.1 Optimal allocations with SEU subjects

In SEU the ordering of the outcomes does not matter. We normalise the number of

tokens to allocate to 1 as with the CRRA function this does not affect the proportions

18



allocated to the various colours.

4.1.1 Type 1 problems

Consistently with the notation adopted with the CARA function, let us say that in

Problem type 1i the choice is between colours j and k. We note:

i 1 2 3

j 2 3 1

k 3 1 2
Then the allocation is between colours j and k. If colour i comes up the subject re-

ceives nothing. So the problem is to choose xj and xk to maximise pju(ejxj) + pku(ekxk)

st xj + xk = 1

We have from our general results above:

x�j =
qj

qj + qk
and x�k =

qk
qj + qk

(25)

where the q’s are given by qi = pr
i er�1

i for i= 1, 2. Here the p’s are simply the

probabilities of the three colours and e’s are the unordered exchange rates.

4.1.2 Type 2 Problems

In Problem Type 2i, the choice is between i and not-i, the subject allocates xi to colour

i and Xi to not-i, then if colour i is drawn the subject receives eixi whereas if the colour

drawn is not-i then the subject receives EiXi. Here Ei denotes the exchange rate be-

tween not-i and money.

Using the above results we have that in the Problem type 2i:

x�i =
qi

qi +Qi
and X�i =

Qi

qi +Qi
(26)

where qi = pr
i er�1

i and Qi = Pr
i Er�1

i , Pi = pj + pk and where Ei is the exchange rate

between allocations to not-i and money. So we have that P1 = p2 + p3, P2 = p3 + p1,

and P3 = p1 + p2.

19



4.2 Optimal allocations with CEU subjects

With CEU subjects the order matters. CEU subjects are defined by six capacities. Let

us denote these by the variables v and V as follows. v1 is the capacity on colour 1, v2

is the capacity on colour 2, v3 is the capacity on colour 3; V1 is the capacity on colours

2 and 3 combined, V2 is the capacity on colours 1 and 3 combined, V3 is the capacity

on colours 1 and 2 combined. In all the problems in our experiment we effectively just

have two colours in every problem.

4.2.1 Type 1 problems

Using the CEU formulation it follows that the v’s in the objective function equation ??

are defined as follows:

Problem type i j k weight on j if ejxj > ekxk weight on k if ejxj > ekxk weight on j if ejxj < ekxk weight on k if ejxj < ekxk

11 1 2 3 v2 V1 � v2 V1 � v3 v3

12 2 3 1 v3 V2 � v3 V2 � v1 v1

13 3 1 2 v1 V3 � v1 V3 � v2 v2

1i i j k vj Vi � vj Vi � vk vk

We need to consider three possibilities. We analyse Problem type 1i.

Possibility 1: ejxj > ekxk We apply the general result.

We have:

x�j =
qj

qj + qk
and x�k =

qk
qj + qk

(27)

where the q’s are given by qj = vr
j e

r�1
j and qk = (Vi � vj)

rer�1
k

We note that the condition for this possibility to be satisfied is that vj(ej+ ek) > Viek.

Possibility 2: ejxj < ekxk This has strict inequalities and we can apply general results.

We have:

x�j =
qj

qj + qk
and x�k =

qk
qj + qk

(28)
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where the q’s are given by qj = (Vi � vk)
rer�1

j and qk = vr
ker�1

k

We note that the condition for this possibility to be satisfied is that vk(ej+ ek) > Viej.

Possibility 3: ejxj = ekxk We must have

x�j =
ek

ej + ek
and x�k =

ej

ej + ek

Note that this solution in always admissible.

4.2.2 Type 2 problems

Let us consider the general Problem type 2i, that is, allocations between i and not-i:

We need to consider the 3 possibilites:

Possibility 1: eixi > Ei(1� xi) = EiXi

Possibility 2: eixi < Ei(1� xi) = EiXi

Possibility 3: eixi = Ei(1� xi) = EiXi

Here the notation Ei means the exchange rate on not-i.

Problem type i not-i weight on i if eixi > EiXi weight on not-i if eixi > EiXi weight on i if eixi < EiXi weight on not-i if eixi < EiXi

21 1 2 and 3 v1 1� v1 1�V1 V1

22 2 3 and 1 v2 1� v2 1�V2 V2

23 3 1 and 2 v3 1� v3 1�V3 V3

2i i j and k vi 1� vi 1�Vi Vi

We need to consider three possibilities. We analyse Problem type 2i.

Possibility 1: eixi > EiXi This has strict inequalities and we can apply general results.

We have:

x�i =
qi

qi +Qi
and X�i =

Qi

qi +Qi

where the q’s and Q’s are given by qi = vr
i er�1

i and Qi = (1� vi)
rEr�1

i

We note that the condition for this possibility to be satisfied is that vi(ei + Ei) > Ei.
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Possibility 2: eixi < Eixi This has strict inequalities and we can apply general results.

We have:

x�i =
qi

qi +Qi
and X�i =

Qi

qi +Qi
(29)

where the q’s and Q’s are given by qi = (1�Vi)
rer�1

i and Qi = Vr
i Er�1

i

We note that the condition for this possibility to be satisfied is that Vi(ei + Ei) > ei.

Possibility 3: eixi = EiXi We must have

x�i =
Ei

ei + Ei
and E�i =

ei

ei + Ei

Note that this solution in always admissible.

4.3 Optimal allocations with AEU subjects

Suppose now that the subject is AEU. This is defined by three probability bounds and

the alpha parameter.

Let us define the bounds on the convex set of possible probabilites by v1, v2, v3.

These three numbers characterise the model. Assume that they add up to less than 1
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(if they add up to 1 then AEU reduces to SEU). They bound a triangular area in the

Mashack-Machina Triangle.

As in the other cases the objective function is given by ??. The crucial point is the

values of the weights. Using our standard notation, where the ordered v’s we have

AEU = α[w1u(e1x1) + w2u(e2x2) + (1� w1 � w2)u(e3x3)] + (30)

(1� α)[(1� w2 � w3)u(e1x1) + w2u(e2x2) + w3u(e3x3)]

This can be written as

AEU = [αw1 + (1� α)(1� w2 � w3)]u(e1x1) + w2u(e2x2) + (31)

[α(1� w1 � w2) + (1� α)w3]u(e3x3)]

We note that this is exactly like the SEU case but with probabilities [αw1 + (1 �

α)(1� w2 � w3)], w2 and [α(1� w1 � w2) + (1� α)w3] on the three outcomes. Note

that these add to 1, so we can apply our standard results. But note the idiosyncracy of

AEU: these ’probabilities’ depend upon the ordering. Following the same notation as

the CEU case, we have:

v1 = αw1 + (1� α)(1� w2 � w3)

v2 = w2 (32)

v3 = α(1� w1 � w2) + (1� α)w3

Then we can write the AEU objective function in the standard format of equation

??. Hence the standard results hold.

4.3.1 Type 1 problems

To save some writing let us introduce the notation Vi to refer to the sum of the v’s

for not-i. That is, V1 = v2 + v3, V2 = v1 + v3 and V3 = v1 + v2. Or more generally
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Vi = vj + vk.

If problem type is 1i then

if ejxj > ekxk weight on xj is αvj + (1� α)(1�Vj) and weight on xk is vk

if ejxj < ekxk weight on xj is vj and weight on xk is αvk + (1� α)(1�Vk)

We need to consider three possibilities. We analyse Problem type 1i.

Possibility 1: ejxj > ekxk We have:

x�j =
qj

qj + qk
and x�k =

qk
qj + qk

(33)

where the q’s are given by qj = [αvj + (1� α)(1�Vj)]
rer�1

j and qk = vr
ker�1

k

We note that the condition for this possibility to be satisfied is that ej[αvj + (1 �

α)(1�Vj)] > ekvk. It does not appear that this can be simplified .

Possibility 2: ejxj < ekxk This has strict inequalities and we can apply general results.

We have:

x�j =
qj

qj + qk
and x�k =

qk
qj + qk

(34)

where the q’s are given by qj = vr
j e

r�1
j and qk = [αvk + (1� α)(1�Vk)]

rer�1
k

We note that the condition for this possibility to be satisfied is that ek[αvk + (1�

α)(1�Vk)] > ejvj. Again it does not appear that this can be simplified.

Possibility 3: ejxj = ekxk We must have

x�j =
ek

ej + ek
and x�k =

ej

ej + ek

Note that this solution in always admissible.

4.3.2 Type 2 problems

If problem type is 2i then
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if eixi > EiXi weight on xi is αvi + (1� α)(1�Vi) and weight on Xi is α(1� vi) +

(1� α)Vi.

if eixi < EiXi weight on xi is xi is α(1� Vi) + (1� α)vi and the weight on Xi is

αVi + (1� α)(1� vi).

Again we can work with the unordered v’s. Let us introduce the notation Vi to refer

to the sum of the v’s for not-i. That is, V1 = v2 + v3, V2 = v1 + v3 and V3 = v1 + v2.

Possibility 1: eixi > EiXi Here we use again the notation Xi to refer to the allocation

to not-i.

Here the weights on xi is αvi + (1� α)(1� Vi) and the weight on Xi is α(1� vi) +

(1� α)Vi.

In this case, the optimal allocations are

x�i =
[αvi + (1� α)(1�Vi)]

rer�1
i

[αvi + (1� α)(1�Vi)]rer�1
i + [α(1� vi) + (1� α)Vi]rEr�1

i

X�i =
[α(1� vi) + (1� α)Vi]

rEr�1
i

[αvi + (1� α)(1�Vi)]rer�1
i + [α(1� vi) + (1� α)Vi]rEr�1

i

Let us ask ourselves what is the condition such that the ranking is satisfied. We

need that eix�i > Ei(1� x�i ). This gives us the condition that [αvi + (1� α)(1�Vi)]ei >

[α(1� vi) + (1� α)Vi]Ei.

Possibility 2: eixi < EiXi Here the weight on xi is α(1�Vi)+ (1� α)vi and the weight

on Xi is αVi + (1� α)(1� vi).

In this case, the optimal allocations are

x�i =
[α(1�Vi) + (1� α)vi]

rer�1
i

[α(1�Vi) + (1� α)vi]rer�1
i + [αVi + (1� α)(1� vi)]rEr�1

i

X�i =
[αVi + (1� α)(1� vi)]

rEr�1
i

[α(1�Vi) + (1� α)vi]rer�1
i + [αVi + (1� α)(1� vi)]rEr�1

i

Again let us ask ourselves what is the condition that the ranking is satisfied. Follow-

ing the logic as above we need that [αVi+ (1� α)(1� vi)]Ei > [α(1�Vi) + (1� α)vi]ei.
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Possibility 3: eixi = EiXi We must have

x�i =
Ei

ei + Ei
and E�i =

ei

ei + Ei

Note that this solution in always admissible.

4.4 Optimal allocations with VEU subjects

A VEU maximizer is defined by three ”adjusted” probabilities that incorporate the am-

biguity about the relative number of pairs of colours (i.e., ambiguity about the relative

number of colour 1 versus colour 2 balls and the ambiguity about the relative num-

ber of colour 2 versus colour 3 balls). These adjusted probabilities are defined as the

baseline prior probability plus or minus the adjustment for ambiguity.

Let us denote the baseline prior probabilities by vi as follows: v1 is the baseline

probability on colour 1, v2 is the baseline probability on colour 2, v3 is the baseline

probability on colour 3. We define by wi the corresponding ordered baseline prior prob-

abilities. So we have

vi = wbac(c,i) for i = 1, 2, 3 or wi = vord(c,i) for i = 1, 2, 3 and c = 1, ..., 6.

Let us write eq. (??) in terms of the ordered baseline prior probabilities

VEU = w1u(e1x1)+w2u(e2x2)+w3u(e3x3)� δ(ju(e1x1)�u(e2x2)j+ ju(e2x2)�u(e3x3)j)

(35)

Since we are considering an ordering, we can ignore the modulus. The (35) becomes

VEU = (w1 � δ)u(e1x1) + w2u(e2x2) + (w3 + δ)u(e3x3) (36)

Now we can easily define the ”adjusted” probabilities and, for analogy to the AEU

case, we define them by v.

v1 = w1 � δ

v2 = w2 (37)

v3 = w3 + δ
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Note that both the baseline prior probabilities and the ”adjusted” probabilities sum up

to one.

4.4.1 Type 1 problems

We follow the same notation of AEU. We refer to Vi as the sum of the v’s for not-i. That

is, V1 = v2 + v3, V2 = v1 + v3 and V3 = v1 + v2. Or more generally Vi = vj + vk. If

problem type is 1i then

Problem type i j k weight on j if ejxj > ekxk weight on k if ejxj > ekxk

11 1 2 3 v2 � δ v3

12 2 3 1 v3 � δ v1

13 3 1 2 v1 � δ v2

1i i j k vj � δ vk

Problem type i j k weight on j if ejxj < ekxk weight on k if ejxj < ekxk

11 1 2 3 v2 v3 � δ

12 2 3 1 v3 v1 � δ

13 3 1 2 v1 v2 � δ

1i i j k vj vk � δ

We need to consider the three possibilities.

Possibility 1: ejxj > ekxk We have

x�j =
(vj � δ)rer�1

j

(vj � δ)rer�1
j + vr

ker�1
k

(38)

x�k =
vr

ker�1
k

(vj � δ)rer�1
j + vr

ker�1
k

We note that the condition for this possibility to be satisfied is that ej(vj� δ) > ekvk.
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Possibility 2: ejxj < ekxk We have

x�j =
vj

rer�1
j

vj
rer�1

j + (vk � δ)rer�1
j

(39)

x�k =
(vk � δ)rer�1

j

vj
rer�1

j + (vk � δ)rer�1
j

(40)

We note that the condition for this possibility to be satisfied is that ek(vk� δ) > ejvj.

Possibility 3: ejxj = ekxk We have

x�i =
Ei

ei + Ei
and x�k =

ei

ei + Ei

Note that this solution in always admissible.

4.4.2 Type 2 problems

Let us consider the general case i, that is, allocations between i and not-i:

There are three possibilities:

Possibilty 1: eixi > Ei(1� xi) = EiXi

Possibility 2: eixi < Ei(1� xi) = EiXi

Possibility 3: eixi = Ei(1� xi) = EiXi

Problem type i not-i weight on i if eixi > EiXi weight on not-i if eixi > EiXi

21 1 2 and 3 v1 � δ 1� v1 + δ

22 2 3 and 1 v2 � δ 1� v2 + δ

23 3 1 and 2 v3 � δ 1� v3 + δ

2i i j and k vi � δ 1� vi + δ

Problem type i not-i weight on i if eixi < EiXi weight on not-i if eixi < EiXi

21 1 2 and 3 1�V1 + δ V1 � δ

22 2 3 and 1 1�V2 + δ V2 � δ

23 3 1 and 2 1�V3 + δ V3 � δ

2i i j and k 1�Vi + δ Vi � δ

We need to consider the three possibilities.
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Possibility 1: eixi > EiXi Here the weights on xi is (νi � δ) and the weight on Xi is

(1� νi + δ)

The optimal allocations are:

x�i =
(vi � δ)rer�1

i

(vi � δ)rer�1
i + (1� vi + δ)rEr�1

i

X�i =
(1� vi + δ)rEr�1

i

(vi � δ)rer�1
i + (1� vi + δ)rEr�1

i

We note that the condition for this possibility to be satisfied is that (vi � δ)ei >

(1� vi + δ)Ei.

Possibility 2: eixi < EiXi Here the weights on xi is (1�Vi + δ) and the weight on Xi

is (Vi � δ)

The optimal allocations are:

x�i =
(1�Vi + δ)rer�1

i

(1�Vi + δ)rer�1
i + (Vi � δ)rEr�1

i

X�i =
(Vi � δ)rEr�1

i

(1�Vi + δ)rer�1
i + (Vi � δ)rEr�1

i

We note that the condition for this possibility to be satisfied is that (1�Vi + δ)ei <

(Vi � δ)Ei.

Possibility 3: eixi = EiXi We have

x�i =
Ei

ei + Ei
and X�i =

ei

ei + Ei

Note that this solution in always admissible.
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4.5 Optimal allocations with COM subjects

The preference functional for COM can be written as

COM = [αp
1
+ (1� α)(p

1
+ (1� p

1
� p

2
� p

3
)/3)]u(e1x1) + (41)

[αp
2
+ (1� α)(p

2
+ (1� p

1
� p

2
� p

3
)/3)]u(e2x2) +

[α(1� p
1
� p

2
) + (1� α)(p

3
+ (1� p

1
� p

2
� p

3
)/3)]u(e3x3)

The probabilities on the three outcomes are [αp
1
+(1� α)(p

1
+(1� p

1
� p

2
� p

3
)/3)], [αp

2
+

(1� α)(p
2
+ (1� p

1
� p

2
� p

3
)/3)] and [α(1� p

1
� p

2
) + (1� α)(p

2
+ (1� p

1
� p

2
�

p
3
)/3)].

Again we need to consider all the possible cases.

4.5.1 Type 1 problems

If problem type is 1i then

if ejxj > ekxk weight on xj is and weight on xk is

if ejxj < ekxk weight on xj is and weight on xk is.

Problem type i j k weight on j if ejxj > ekxk weight on k if ejxj > ekxk

11 1 2 3 αp
2
+ (1� α)

�1+2p
2
�p

3
3

�
α(1� p

2
) + (1� α)

�1+2p
3
�p

2
3

�
12 2 3 1 αp

3
+ (1� α)

�1+2p
3
�p

1
3

�
α(1� p

3
) + (1� α)

�1+2p
1
�p

3
3

�
13 3 1 2 αp

1
+ (1� α)

�1+2p
1
�p

2
3

�
α(1� p

1
) + (1� α)

�1+2p
2
�p

1
3

�
1i i j k αp

j
+ (1� α)

�
1+2p

j
�p

k
3

�
α(1� p

j
) + (1� α)

�
1+2p

k
�p

j
3

�
Problem type i j k weight on j if ejxj < ekxk weight on k if ejxj < ekxk

11 1 2 3 α(1� p
3
) + (1� α)

�1+2p
2
�p

3
3

�
αp

3
+ (1� α)

�1+2p
3
�p

2
3

�
12 2 3 1 α(1� p

1
) + (1� α)

�1+2p
3
�p

1
3

�
αp

1
+ (1� α)

�1+2p
1
�p

3
3

�
13 3 1 2 α(1� p

2
) + (1� α)

�1+2p
1
�p

2
3

�
αp

2
+ (1� α)

�1+2p
2
�p

1
3

�
1i i j k α(1� p

k
) + (1� α)

�
1+2p

j
�p

k
3

�
αp

k
+ (1� α)

�
1+2p

k
�p

j
3

�
We need to consider the three possibilities.

30



Possibility 1: ejxj > ekxk We have:

x�j =

�
αp

j
+ (1� α)

�
1+2p

j
�p

k
3

��r
er�1

j�
αp

j
+ (1� α)

�
1+2p

j
�p

k
3

��r
er�1

j +

�
α(1� p

j
) + (1� α)

�
1+2p

k
�p

j
3

��r
er�1

k

x�k =

�
α(1� p

j
) + (1� α)

�
1+2p

k
�p

j
3

��r
er�1

k�
αp

j
+ (1� α)

�
1+2p

j
�p

k
3

��r
er�1

j +

�
α(1� p

j
) + (1� α)

�
1+2p

k
�p

j
3

��r
er�1

k

We note that the condition for this possibility to be satisfied is that ej[αp
j
+ (1 �

α)

�
1+2p

j
�p

k
3

�
] > ek[α(1� p

j
) + (1� α)

�
1+2p

k
�p

j
3

�
].

Possibility 2: ejxj < ekxk We have:

x�j =

�
α(1� p

k
) + (1� α)

�
1+2p

j
�p

k
3

��r
er�1

j�
α(1� p

k
) + (1� α)

�
1+2p

j
�p

k
3

��r
er�1

j +

�
αp

k
+ (1� α)

�
1+2p

k
�p

j
3

��r
er�1

k

(42)

x�k =

�
αp

k
+ (1� α)

�
1+2p

k
�p

j
3

��r
er�1

k�
α(1� p

k
) + (1� α)

�
1+2p

j
�p

k
3

��r
er�1

j +

�
αp

k
+ (1� α)

�
1+2p

k
�p

j
3

��r
er�1

k

We note that the condition for this possibility to be satisfied is that ek[αp
k
+ (1�

α)

�
1+2p

k
�p

j
3

�
] > ej[α(1� p

k
) + (1� α)

�
1+2p

j
�p

k
3

�
].

Possibility 3: ejxj = ekxk We must have

x�j =
ek

ej + ek
and x�k =

ej

ej + ek

Note that this solution in always admissible.

4.5.2 Type 2 problems

As for the CARA case, let us use the notation Pi to refer to the sum of the p’s for not-i.

That is, P1 = p
2
+ p

3
, P2 = p

1
+ p

3
and P3 = p

1
+ p

2
. Or more generally Pi = p

j
+ p

k
.

There are three possibilities:
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Possibilty 1: eixi > Ei(1� xi) = EiXi

Possibility 2: eixi < Ei(1� xi) = EiXi

Possibility 3: eixi = Ei(1� xi) = EiXi

Problem type i not-i weight on i if eixi > EiXi weight on not-i if eixi > EiXi

21 1 2 and 3 αp
1
+ (1� α)(

1+p
1
�P1

2 ) α(1� p
1
) + (1� α)(

1�p
1
+P1

2 )

22 2 3 and 1 αp
2
+ (1� α)(

1+p
2
�P2

2 ) α(1� p
2
) + (1� α)(

1�p
2
+P2

2 )

23 3 1 and 2 αp
3
+ (1� α)(

1+p
3
�P3

2 ) α(1� p
3
) + (1� α)(

1�p
3
+P3

2 )

2i i j and k αp
i
+ (1� α)(

1+p
i
�Pi

2 ) α(1� p
i
) + (1� α)(

1�p
i
+Pi

2 )

Problem type i not-i weight on i if eixi < EiXi weight on not-i if eixi < EiXi

21 1 2 and 3 α(1� P1) + (1� α)(
1+p

1
�P1

2 ) αP1 + (1� α)(
1�p

1
+P1

2 )

22 2 3 and 1 α(1� P2) + (1� α)(
1+p

2
�P2

2 ) αP2 + (1� α)(
1�p

2
+P2

2 )

23 3 1 and 2 α(1� P3) + (1� α)(
1+p

3
�P3

2 ) αP3 + (1� α)(
1�p

3
+P3

2 )

2i i j and k α(1� Pi) + (1� α)(
1+p

i
�Pi

2 ) αPi + (1� α)(
1�p

i
+Pi

2 )

We need to consider the three possibilities

Possibility 1: eixi > EiXi Here the weights on xi is αp
i
+ (1� α)(

1+p
i
�Pi

2 ) and the

weight on Xi is α(1� p
i
) + (1� α)(

1�p
i
+Pi

2 )

The optimal allocations are:

x�i =

�
αp

i
+ (1� α)(

1+p
i
�Pi

2 )
�r

er�1
i�

αp
i
+ (1� α)(

1+p
i
�Pi

2 )
�r

er�1
i +

�
α(1� p

i
) + (1� α)(

1�p
i
+Pi

2 )
�r

Er�1
i

X�i =

�
α(1� p

i
) + (1� α)(

1�p
i
+Pi

2 )
�r

Er�1
i�

αp
i
+ (1� α)(

1+p
i
�Pi

2 )
�r

er�1
i +

�
α(1� p

i
) + (1� α)(

1�p
i
+Pi

2 )
�r

Er�1
i

We note that the condition for this possibility to be satisfied is that [αp
i
+(1� α)(

1+p
i
�Pi

2 )]ei >

[α(1� p
i
) + (1� α)(

1�p
i
+Pi

2 )]Ei.

Possibility 2: eixi < EiXi Here the weights on xi is α(1� Pi) + (1� α)(
1+p

i
�Pi

2 ) and

the weight on Xi is αPi + (1� α)(
1�p

i
+Pi

2 ).

The optimal allocations are:
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x�i =

�
α(1� Pi) + (1� α)(

1+p
i
�Pi

2 )
�r

er�1
i�

α(1� Pi) + (1� α)(
1+p

i
�Pi

2 )
�r

er�1
i +

�
αPi + (1� α)(

1�p
i
+Pi

2 )
�r

Er�1
i

X�i =

�
αPi + (1� α)(

1�p
i
+Pi

2 )
�r

Er�1
i�

α(1� Pi) + (1� α)(
1+p

i
�Pi

2 )
�r

er�1
i +

�
αPi + (1� α)(

1�p
i
+Pi

2 )
�r

Er�1
i

We note that the condition for this possibility to be satisfied is that [α(1� Pi) + (1�

α)(
1+p

i
�Pi

2 )]ei < [αPi + (1� α)(
1�p

i
+Pi

2 )]Ei.

Possibility 3: eixi = EiXi We have

x�i =
Ei

ei + Ei
and X�i =

ei

ei + Ei

Note that this solution in always admissible.
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