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1 Introduction

In this paper we have assumed two particular forms for the utility function of the
subjects: 1) a Constant Absolute Risk Aversion (CARA) form and 2) a Constant Relative
Risk Aversion (CRRA) form.

1) We took this to be the CARA form:

1 —exp(—rx) .
u(x) = 1 —exp(—75r) ifr #0
X ..
= 7—51f7’—0

In this case we maximise a function of the form
wju(ejx;) + wyu(exxy)

subject to the constraint that x; + x; = m. Given the CARA form the general optimal

allocations are

exm + {In[(wje;) / (wreg) ]} /7

j ej + ek
oo amt {Inf(wrer)/ (wjej)]} /7
ko — ej + ex

We note that there is no guarantee that the x’s are positive and less than m. In the
experiment subjects were constrained to have all allocations non-negative and we took

that into account in the estimation.

2)We took this to be the CRRA form:

xlfl/r -1
= In(x)ifr=1



In this case we maximise a function of the form

wyu(erx1) + wou(exxy)

subject to the constraint that x; + x, = 1. Given the CRRA form the general optimal

allocations are

« 4
x]'—
qi + qk

where q; = ¢/ 'w! fori = 1,2.
In the following sections we will provide a description of the optimal allocations

for the different preference functionals in both utility forms.

2 Experimental Design

In the experiment there are two types of problem: problems of Type 1 and problems of
Type 2. In problems of Type 1 subjects were asked to allocate tokens between 2 colours
(with the exchange rate on the third being zero). In problems of Type 2 subjects were
asked to allocate tokens between one colour and the other two.

Specifically:

Problem type 11: allocation between 2 and 3

Problem type 12: allocation between 1 and 3

Problem type 13: allocation between 1 and 2

Problem type 21: allocation between 1 and (2 and 3)

Problem type 22: allocation between 2 and (1 and 3)

Problem type 23: allocation between 3 and (1 and 2)

3 Optimisations with CARA function

3.1 Optimal allocations with SEU subjects

In EU the ordering of the outcomes does not matter.



3.1.1 Type 1 problems

We need some notation. Let us say that in Problem type 1i the choice is between colours

j and k. We note:

i 12 3
i 231
k312

Then the allocation is between colours j and k. If colour i comes up the subject re-
ceives nothing. So the problem is to choose x; and x; to maximise pju(e;x;) + pru(exxy)
stxj+xp=m

From the general results above we have:

exm + {In[(pje;) / (prex)]} /7

X;f - ej + ey 1)
oo gt {In[(prex)/ (pjej)]} /7
k= ej + ex

Here the p’s are simply the probabilities of the three colours and ¢’s are the un-

ordered exchange rates.

3.1.2 Type 2 Problems

In Problem Type 2i, the choice is between i and not-i, the subject allocates x; to colour
i and X; to not-i, then if colour i is drawn the subject receives e;x; whereas if the colour
drawn is not-i then the subject receives E;X;. Here E; denotes the exchange rate be-
tween not-i and money.

Using the above results we have that in the Problem type 2i:

o emt {n[(BE)/ (pie)) /7
o e; + E;

where E; is the exchange rate between allocations to not-i and money and where P} =

p2+ p3, P = p3+ p1,and P3 = pg + pa.



3.2 Optimal allocations with CEU subjects

For CEU subjects the order matters. A CEU subject is defined by six capacities. Let us
denote these by the variables v and V as follows. v; is the capacity on colour 1, v; is
the capacity on colour 2, v3 is the capacity on colour 3; V; is the capacity on colours 2
and 3 combined, V; is the capacity on colours 1 and 3 combined, V3 is the capacity on

colours 1 and 2 combined.

3.2.1 Type1 problems

Using the CEU formulation it follows that the v’s in the objective function equation ??

are defined as follows:

Problem type i j k weightonjife;x; > exxx weightonkifejx; > exxy
11 1 2 3 v Vi—v;

12 2 3 1 v Vo —v3

13 31 2 v Vs—1

1i i j ok v Vi—vj

Problem type i j k weightonjife;jx; <egxp weightonkife;x; < epxy
11 1 2 3 Vi—u3 U3

12 2 31 WVh—0 01

13 31 2 Vza—1u; ()

1i i j k Vi—uy Uk

We need to consider three possibilities.

Possibility 1: ejx; > exx;  We apply the general result.
We have:

exm + {In[(vje;) / (Vi — vj)ex)]}/r

xpo= : 3)
ej + e

oo gmt {In[((V; — vj)ex) / (vjej)] } /7 @
k= ej + ex

We note that the condition for this possibility to be satisfied is that vje; > (V; — v;)ey.



Possibility 2: ejx; < exxy We have:

exm + {In[(V; — vy )e;) / (vrer)]} /7

j ej + ey
o emt {Inf(vxer)/ ((Vi — or)ej)]} /7
k= ej +ex

We note that the condition for this possibility to be satisfied is that (V; — v)e; >
vkek- Note that if Possibility 1 and Possibility 2 are both possible, we still need to check

which gives the highest utility.

Possibility 3: ejx; = exxy  We must have

exm ejm
=" andxj =

€j+€k €j+€k

Note that this solution in always admissible.

3.2.2 Type 2 problems

Let us consider the general Problem type 2i, that is, allocations between i and not-i:
There are three possibilites:
Possibility 1: e;x; > E;(1 — x;) = E;X;
Possibility 2: e;x; < E;(1 — x;) = E;X;
Possibility 3: e;x; = E;(1 — x;) = E;X;
Here the notation E; means the exchange rate on not-i.

Problem type i not-i weight on i if e;x; > E;X; weight on not-i if e;x; > E; X;

21 1 2and3 v 1—1v
22 2 3and1 v 1—v
23 3 land2 vu3 1—u3
2i i jandk v; 1—19;



Problem type i not-i weight on i if e;x; < E;X; weight on not-i if e;x; < E; X

21 1 2and3 1-V; v
22 2 3and1l 1-V, \%
23 3 land2 1-V3 V3
2i i jandk 1-V; V;

We need to consider the 3 possibilites:

Possibility 1: ¢;x; > E;X; This has strict inequalities and we can apply general results.

We have:

. _  Em+{In[(vie;)/((1 —v;)E;)]}/r

YT e; + E;
¢ — em+A{In[(1—v)Ei)/ (vie)]}/r
Lo e; + E;

We note that the condition for this possibility to be satisfied is that v;e; > (1 — v;)E;.

Possibility 2: ¢;x; < E;x; We have:

« _ Em+{In[((1 = Vi)e:)/(ViEi)]|}/7

‘ e; + E;
o _ em+ In[(ViE)/((1= V)eol) /v
Lo ej+ E;

We note that the condition for this possibility to be satisfied is that (1 — V;)e; > VJE;.

Possibility 3: ¢;x; = E;X; We have:

E;m e;jm
r d X —
0T E TN Ty E

Note that this solution in always admissible.



3.3 Optimal allocations with AEU subjects

Suppose now that the subject is AEU maximizer. This is defined by three probability

bounds and the alpha parameter.Let us define the bounds on the convex set of possible
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probabilites by v, vy, v3. These three numbers characterise the model. Assume that
they add up to less than 1 (if they add up to 1 then AEU reduces to SEU). They bound
a triangular area in the Marshack-Machina-Triangle.

As in the other cases the objective function is given by ??. The crucial point is the

values of the weights. Using our standard notation, where the ordered v’s we have

AEU = wafwyu(erxy) +wou(exxn) + (1 —wy — wy)u(esxs)] + (5)

(1 —a)[(1 —wy —w3)u(erx1) + wau(eaxz) + wsu(ezxs)]

This can be written as

AEU = [aw;+ (1 —a)(1 —wy —ws)]u(erxy) + wou(eaxz) + (6)

[a(1 —wy —wy) + (1 — a)ws]u(esxs)]

We note that this is exactly like the SEU case but with probabilities [aw; + (1 —a)(1 —
wy — w3)], wp and [a(1 — w1 — wy) + (1 — a)ws] on the three outcomes. Note that these

add to 1, so we can apply our standard results. But note the idiosyncracy of AEU:

7



these "probabilities” depend upon the ordering. Following the same notation as the

CEU case, we have:

@1 = aw;+ (1—a)(1 —wy —ws) (7)
0y = W (8)
@3 = a(l—wy—wy)+ (1—a)w;

We need to consider all the possible cases.

3.3.1 Type 1 problems

To save some writing let us introduce the notation V; to refer to the sum of the v’s
for not-i. Thatis, Vi = vy +v3, Vo = v1 +v3 and V3 = v; + v3. Or more generally
Vi=10;+ v

If problem type is 1i then

if ejx; > exx, weight on x;is av; + (1 — a)(1 — V;) and weight on x; is vy

if ejx; < exxx weight on x; is v; and weight on x; is avy + (1 — a)(1 — V)

Problem type i j k weightonjifejx; > exp weight onkif ejx; > epxy
11 1 2 3 avp+(1—a)(1—Vy) U3

12 2 3 1 avs+(1—a)(1—V3) U1

13 312 avi+(1—a)(1-V) U

1i i j ok avj+(1—-a)(1-V)) Uk

Problem type i j k weightonjife;x; <erxy weightonkife;x; < epxy
11 1 2 3 um av3 + (1 —a)(1— V3)

12 2 3 1 v avy + (1 —a)(1—Vp)

13 31 2 v avy + (1 —a)(1— V)

1i i j k v avr + (1 —a)(1— V)

We need to consider the three possibilities.



Possibility 1: ejx; > exxy  We have:

exm + {In[((avj + (1 — a)(1 = Vj))ej) / (vger)]} /v

i ei+e 9)
j+ ek

oo amt {In[(vgex) / ((av; + (1 — a)(1 = Vj))ep)]} /7 w0
. ej + e

We note that the condition for this possibility to be satisfied is that e;[av; + (1 — a)(1 —

V])] > exUy.

Possibility 2: ejx; < exxy We have:

exm + {In[(vje;) / ((wvp + (1 — a) (1 — Vi) Jex )|} /7

i = (11)
ej + ek

L omet Onl((emt (1)1~ Ve / (i)l /7 )

ko ej + e

We note that the condition for this possibility to be satisfied is that e [avy + (1 —a)(1 —

Vi)] > ejvj. Again it does not appear that this can be simplified.

Possibility 3: ¢jx; = exxy  We must have

Note that this solution in always admissible.

3.3.2 Type 2 problems

Let us consider the general case i, that is, allocations between i and not-i.

Problem type i not-i weight on i if e;x; > E;X; weight on not-i if e;x; > E; X;

21 1 2and3 wav;+(1—a)(1— V) a(l—v))+(1—a)V
22 2 3and1l avp+ (1—w)(1—Vp) a(1—v)+ (1—a)V,
23 3 land2 avs+(1-a)(1-V3)  a(l-vs)+(1-a)Vs
2i i jandk avi+(1—a)(1-V)) a(l—v)+(1—a)V;



Problem type i not-i weight on i if e;x; < E;X; weight on not-i if e;x; < E; X

21 1 2and3 a(1—V;)+ (1 —a)v aVi+(1—a)(1—10p)
22 2 3and1 a(1—-Vo)+ (1 —a)v, aVo+ (1 —a)(1—1vy)
23 3 land2 «a(l1—V3)+ (1 —a)vs aVi+ (1—a)(1—0v;3)
2i i jandk wa(1—-V;)+(1—a)v; aVi+ (1 —a)(1—1v;)

We need to consider the three possibilities.

Possibility 1: e;x; > E;X;. Here the weights on x; is av; + (1 — a)(1 — V;) and the
weight on X;is a(1 —v;) + (1 —a)V;.

In this case, the optimal allocations are

o Eim + {In[((av; + (1 —a)(1 = Vj))e;)/ (2(1 —v;) + (1 — ) Vi) E;)] } /7
! e; + E;

o~ em+{lnj(a(l—o;) + (1 - a)Vi)Ei)/((avi + (1 —a)(1 — Vi))ei) |} /7
! ej + E;

We need that e;x7 > E;(1 — x7). This gives us the condition that [av; + (1 — a)(1 —

Vi)lei > [a(1—v;) + (1 — ) VI E;.

Possibility 2: ¢;x; < E;X; Here the weighton x;is (1 —V;) + (1 — a)v; and the weight
on X;isaV;+ (1 —a)(1—1v;).

In this case, the optimal allocations are

o - EmAAIn[((a(1 = Vi) + (1 —a)vi)e;) / ((aVi + (1 —a) (1 — ) Ei)]} /7

i ej + E;
o em {In[((aV;+ (1 —a)(1—9;))E;)/((a(1 = V;) + (1 —a)v;)e;)] } /7
! e;+ E;

Following the logic as above we need that [aV; + (1 — a)(1 — v;)]E; > [a(1 —V;) +
(1 —a)v;le;.

Possibility 3: ¢;x; = E;X; We must have

10



E.
xf = M and X =
e; + E; e; + E;

Note that this solution in always admissible.

3.4 Optimal allocations with VEU subjects

Suppose now that the subject is VEU maximizer. Such a subject is defined by three
“adjusted” probabilities that incorporate the ambiguity about the relative number of
pairs of colours (i.e., ambiguity about the relative number of colour 1 versus colour 2
balls and the ambiguity about the relative number of colour 2 versus colour 3 balls).
These adjusted probabilities are defined as the baseline prior probability plus or minus
the adjustment for ambiguity.

Let us denote the baseline prior probabilities by v; as follows: v; is the baseline
probability on colour 1, v, is the baseline probability on colour 2, v3 is the baseline
probability on colour 3. We define by w; the corresponding ordered baseline prior prob-
abilities. So we have

Vi = Whae(c,i) fori =1,2,3 or wj = vypy(c;y fori =1,2,3and c =1, ..., 6.

Let us write eq. (??) in terms of the ordered baseline prior probabilities

VEU = wyu(e1x1) +wou(exxy) +wsu(esxs) — o(|u(erxy) — u(epxn)| + |u(eaxz) —u(esxs)|)
(13)

Since we are considering an ordering, we can ignore the modulus. The (35) becomes

VEU = (wy — 0)u(eyxy) + wou(exxy) + (ws + 6)u(ezxs) (14)

Now we can easily define the “adjusted” probabilities and, for analogy to the AEU

case, we define them by w.

W = w1 —90
Wy = Wy (15)
W3 = w3+

11



Note that both the baseline prior probabilities and the “adjusted” probabilities sum up

to one.

3.4.1 Type 1 problems

We follow the same notation of AEU. We refer to V; as the sum of the v’s for not-i. That
is, Vi = vp +v3, Vo = v1 + v3 and V3 = v1 + v2. Or more generally V; = v; + v;. If

problem type is 1i then

Problem type i j k weightonjife;x; > exxx weightonkifejx; > exxy
11 1 2 3 v—-9¢ U3

12 2 3 1 v3—96 (41

13 31 2 v1-6 Uy

1i i j ok vj—=9 (8

Problem type i j k weightonjife;x; <erxp weightonkifejx; < epxy
11 1 2 3 v v3—0

12 2 3 1 uvs v1—0

13 31 2 m Uy — 0

1i i j ok v v — 0

We need to consider the three possibilities.

Possibility 1: ejx; > exx;  We have

exm + {In[((v; — 8)e;)/ (ve)]} /7

x]’-‘ = (16)
ej + ek

et Onl(wse) /(0 )]} /o .
ko ej + e

We note that the condition for this possibility to be satisfied is that e;(v; — J) > exv;.

Possibility 2: ejx; < exxy We have

exm + {In[(vjej) / (v — 8)ex)]} /7

;- (18)
ej + ek

o gm AIn[((or — S)e) / (vje))1} / (19)
k = ej + e

12



We note that the condition for this possibility to be satisfied is that e (vx — J) > e;v;.

Possibility 3: ejx; = exx;  We have

Em
xf = ——andx; =
ej + E;

e;m
ei +E;

Note that this solution in always admissible.

3.4.2 Type 2 problems

Let us consider the general case i, that is, allocations between i and not-i:
There are three possibilities:
Possibilty 1: e;x; > E;(1 — x;) = E;X;
Possibility 2: e;x; < E;(1 — x;) = E;X;
Possibility 3: e;x; = E;(1 — x;) = E; X;
Problem type i not-i weight on i if e;x; > E;X; weight on not-i if e;x; > E; X;

21 1 2and3 vy —946 1—v1+9
22 2 3and1l v, —9¢ 1—vy+90
23 3 land2 v3—9 1—v3+96
2i i jandk wv;—6 1—vi+9

Problem type i not-i weight on i if e;x; < E;X; weight on not-i if e;x; < E; X;

21 1 2and3 1-Vi+6 Vi—9
22 2 3and1l 1—-—V,+946 Vo —90
23 3 land2 1—-V3+46 V3—96
2i i jandk 1-V;+9 Vi—¢

We need to consider the three possibilities.

Possibility 1: e;x; > E;X; Here the weights on x; is (v; — ¢) and the weight on X; is
(1—v;+9)

The optimal allocations are:

13



o Eim + {In[((v; — d)e;) /(1 —v; +O)E;)]|} /7
! e; +E;

Xt — eim 4+ {In[((1 —v; +0)E;)/ ((vi — d)e;)]} /1
! e; + E;

We note that the condition for this possibility to be satisfied is that (v; — d)e; > (1 —

Vi + (S)EZ'.

Possibility 2: ¢;x; < E;X; Here the weights on x; is (1 — V; + 6) and the weight on X;
is (V; —9)

The optimal allocations are:

o _ Em+A{In[((1-Vi+d)ei)/((Vi—d)Ei)]}/r

T e +E;
o _ emt nl((V,~ )E) /(1 Vi+ 8)e)]}/r
b ¢; + E;

We note that the condition for this possibility to be satisfied is that (1 — V; +d)e; <
(Vi — 6)Ei.

Possibility 3: ¢;x; = E;X; We have

% Eim

e;m
xl' —
e; + E;

e; +E;

and X} =

Note that this solution in always admissible.

3.5 Optimal allocations with Contraction Model

Suppose now that a subject has preferences described by the Contraction Model. The

preference functional depends crucially on the ordering between u(e1x7), u(exx;), and

u(esxs).

14



Suppose that u(e1x1) > u(epxz) > u(ezxs). We have that

COM = afp u(eix1) +Ezu(ezx2) + (1 —p,—p,us]+ (1 - oc)[(El + (1 =p,—p,—py)/3)ulerxr)

(p, + (L =p, = p, —py)/3uleax2) + (py + (1 —p, —p, — p,)/3)u(esxs)]

This looks very similar to SEU with probabilities/weights which depend on the
bounds and alpha and which is the bigger outcome.

This can be written as

COM = [ap, +(1—a)(p, + (1~ p, — p, — p,)/3)ulerzr) + 20)
ap, + (1= a)(p, + (1 p, —p, — p,)/3)ule2xs) +

[a(l—p, —p,)+(1— w)(& + (1 — P, — P, Ps)/3)]u(esxs)

The probabilities on the three outcomes are [ap, + (1 —a)(p, +(1—p, — py)/3)] lap, +

(1—a)(p,+(A—p,—p,—p;)/3)]and [a(1—p, —p)+ (1 —a)(p,+ ( —pP, P,
p,)/3)]. Note that these add to 1, so we can apply our standard results. But note that
these "probabilities” depend upon the ordering. Following the same notation as the

CEU and AEU case, we have:
@ = ap, +(1—a)(p,+(1—p, —p,—p,)/3) (21)
@ = ap,+(1—a)(p,+(1—p, —p,—p,)/3) (22)
@3 = a(1—31—32)+(1—w)(g3 ( —p, - ps)/3)

Again we need to consider all the possible cases.

3.5.1 Type 1 problems

If problem type is 1i then
if ejx; > exx; weight on x; is and weight on x; is

if ejx; < epxy weight on x; is and weight on xj is.

15



Problem type | i | j | k | weighton jif ejx; > exxp | weight on kif ejx; > exxy

1 123 ap, +(1—a)<”23—2‘33) a(1-p)+(1-a)

1+2p,—p 1+2p. —p
12 2|31 ap,+(1- a)( 1) a(1—33)+(1—a)< b J)
13 312 ap, +(1-0) “2’71 2Y la(t—p)+(1-a) (”2332 h)
. . 1+2P —P 1+2p —p.
1i iljlk ocp+(1 oc)( > a(l—gj)+(1—zx)( 3]>
Problem type | i | j | k | weighton jif ejx; < exx weight on k if ejx; < exxy
1+2p, —p 1+2p.—p
11 11213 a(l—&)+(1_a)< L2 4) OCEB—F(I—&)( 4f2>
1+2p,—p 1+2p. —p
12 2131 zx(l—pl)—i—(l—oc)( 33,1> ocgl+(1—a)( 1 4)
1+2p —p, 1+2p, —p.
13 311]2 | al—p)+1—-a) (—HF2) |ap,+(1—-a) (—5D)
. T 52 -, T12p, P,
1i P k]a=p)+(1—a) . ap, +(1—a) 3
We need to consider the three possibilities.
Possibility 1: ejx; > exxy  We have:
1+2p.—p 1+2p —p
e+ {Inl(op; + (1= ) (5 g/ (a(1 = )+ (1) (5 el
x>k
] e; + ey
j
1+2p, —p. 1+2p.—p
-+ {Inl(a(1 ~ p) + (1 =00 (“H s g+ (1= 0) (F e}
T T ej + e

We note that the condition for this possibility to be satisfied is that e; [sz]. + (1 -

0 (S > alet-p) + 1 -a) (S5

Possibility 2: ejx; < e;x;  We have:

1+2p — -
e+ {Inf(x(1 = p,) + (1 =) (4 ) ey Cap, + (1= ) (52 el
j— (D)
% ej + ek N
14+2p, —p. 142p —
e+ {in(ap, + (1= 0) (52 e/ (a(1 = )+ (1) (FHE )y
o (24
X = €j+€k (=T)

We note that the condition for this possibility to be satisfied is that e [ocEk + (1 -

o) (szk_pf)] >ejla(l—p,) +(1—a) (Hzgf_pk)].
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Possibility 3: ¢jx; = exxy  We must have

*

j

em
ej + e

6]'}’)1
ej + ex

and x; =

Note that this solution in always admissible.

3.5.2 Type 2 problems

Let us consider the general case i, that is, allocations between i and not-i.

To save some writing let us introduce the notation P; to refer to the sum of the p’s

for not-i. Thatis, Py = p, + p,

Py = E]' TPy

There are three possibilities:

/BZ

=ptpyand B = p,

POSSibﬂty 1:ejx; > El(l — xi) = E;X;

+ Py Or more generally

Possibility 2: e;x; < E;(1— x;) = E;X;

Possibility 3: e;x; = E;(1 — x;) = E;X;
Problem type | i | not-i weight on i if e;x; > E;X; | weight on not-i if e;x; > E; X
21 1|2and3 | ap, +(1—oc)(1+£1_£1) a(1-p)+(1—a)(— 5
22 2| 3and1 | ap, + (1-a) ("B 2) |a(l-p)+ (1 -a)(—52)
23 3| 1and2 | ap, + (1 -0)(“52) | a(l—p,) +(1-a)(-37)
2i i |jandk |ap, +(1 ©(CH) la(l-p) +(1-a)(—5)
Problem type | i | not-i weight on i if e;x; < E; X weight on not-i if ¢;x; < E; X
21 112and3 | a(1—Py) + (1 —a) (0 B2) | aPy + (1—a)(— 570
2 2| 3and 1| a(1—Py)+ (1—a) (22 | aPy + (1 — a)(—B52)
23 3 1and2 | a(1—Py)+(1—a) ("2 | aPsy+ (1—a)(—52)
2i i | jandk | (1P +(1-a) (R4 | api+(1-a)(—45)

We need to consider the three possibilities

Possibility 1: e;x; > E;X; Here the weights on x; is ap, + (1 — zx)(#) and the

weight on X;is a(1 —p.) + (1 — a)(

The optimal allocations are:

1—Bi+Pl‘
2

=)
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Em + {In[(ap, + (1 — ) (“G—))er/ (a(1 — p) + (1 — &) () E} /r

! e; + E;
eim + {In[(x(1— p) + (1 — &) ("G ))E/ (ap, + (1 — ) (“5—))ei]} /1
! e; + E;

14+p.—P;
2

We note that the condition for this possibility to be satisfied is that [ap, 4 (1 —a)( +B§ =
1—p.+P;
[e(1=p)+ (1 —a)(—F—)IE:

1+p—P

Possibility 2: e;x; < E;X; Here the weights on x; is a(1 — P;) + (1 — «)( ') and
the weight on X; is aP; + (1 — oc)(l_%JrBi ).
The optimal allocations are:
o Em {nf(e(1—P) + (1= ) (ZH))er/ (e + (1= @) (5 B}/
' ei + E;
ot {Inlai+ (1 w)(l_pz"wi))fi(g(l — Py + (1= ) (5} /1
i T Ei

We note that the condition for this possibility to be satisfied is that [a(1 — P;) + (1 —
p +P;
) ("G e < [P+ (1 ) (G )E;

Possibility 3: ¢;x; = E;X; We have

x; = Eim and X} = eim
ej+ E; e;+ E;

Note that this solution in always admissible.

4 Optimisations with CRRA function

4.1 Optimal allocations with SEU subjects

In SEU the ordering of the outcomes does not matter. We normalise the number of

tokens to allocate to 1 as with the CRRA function this does not affect the proportions

18



allocated to the various colours.

411 Type1 problems

Consistently with the notation adopted with the CARA function, let us say that in

Problem type 1i the choice is between colours j and k. We note:

i 123
i 231
k31 2

Then the allocation is between colours j and k. If colour i comes up the subject re-
ceives nothing. So the problem is to choose x; and x; to maximise pju(e;x;) + pxu(exxy)
stxj+x =1

We have from our general results above:

x]‘-‘ = and x; = Ik (25)
q;j + gk q9j + qk

where the g’s are given by g; = pfe?il for i=1, 2. Here the p’s are simply the

probabilities of the three colours and ¢’s are the unordered exchange rates.

4.1.2 Type 2 Problems

In Problem Type 2i, the choice is between i and not-i, the subject allocates x; to colour
i and X; to not-i, then if colour i is drawn the subject receives e;x; whereas if the colour
drawn is not-i then the subject receives E;X;. Here E; denotes the exchange rate be-
tween not-i and money.

Using the above results we have that in the Problem type 2i:

x; 9 and X' = Qi (26)

‘:qi+Qi g; + Qi

where g; = p?e;_land Q; = P[Ef_l, P; = pj + px and where E; is the exchange rate
between allocations to not-i and money. So we have that P} = py + p3, > = p3 + p1,

and P; = p; + p2.
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4.2 Optimal allocations with CEU subjects

With CEU subjects the order matters. CEU subjects are defined by six capacities. Let
us denote these by the variables v and V as follows. v; is the capacity on colour 1, v,
is the capacity on colour 2, v3 is the capacity on colour 3; V; is the capacity on colours
2 and 3 combined, V; is the capacity on colours 1 and 3 combined, V3 is the capacity
on colours 1 and 2 combined. In all the problems in our experiment we effectively just

have two colours in every problem.

421 Type1 problems

Using the CEU formulation it follows that the v’s in the objective function equation ??

are defined as follows:

Problem type i j k weightonjifejx; > ex, weightonkife;x; > exxy weightonjife
11 1 2 3 v Vi—v; Vi—u3
12 2 3 1 wv; Vo — 3 Vo — v
13 3 1 2 v V3 —0vq Vi3 — 0y
1i i j ok v Vi —v; Vi — vy

We need to consider three possibilities. We analyse Problem type 1i.

Possibility 1: ejx; > exxy  We apply the general result.
We have:

xj = i and xj = Ik
q9; + 9k qj + qk

(27)

where the g’s are given by q; = v]r.e]r._l and g, = (V; — v]-)rez_1

We note that the condition for this possibility to be satisfied is that vj(ej +ex) > Viex.

Possibility 2: ¢jx; < erx;  This has strict inequalities and we can apply general results.

We have:

(28)
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where the ¢’s are given by q; = (V; — vk)rejr._1 and gy = ve; !

We note that the condition for this possibility to be satisfied is that vy (e +ex) > Vie;.
Possibility 3: ¢jx; = exxy  We must have

e €j
xf=—F_andxj = —
ej +ex ej + ex

Note that this solution in always admissible.

4.2.2 Type 2 problems

Let us consider the general Problem type 2i, that is, allocations between i and not-i:

We need to consider the 3 possibilites:
Possibility 1: e;x; > E;(1 — x;) = E;X;
Possibility 2: e;x; < E;(1 — x;) = E;X;
Possibility 3: e;x; = E;(1 — x;) = E;X;
Here the notation E; means the exchange rate on not-i.

Problem type i not-i weight on i if e;x; > E;X; weight on not-i if e;x; > E; X;

21 1 2and3 v 1—1v
22 2 3and1 v, 1—0v
23 3 land2 u3 1—u3
2i i jandk v; 1—19;

We need to consider three possibilities. We analyse Problem type 2i.

Possibility 1: ¢;x; > E;X; This has strict inequalities and we can apply general results.

We have:

x; = 9 and X' = Qi
7i + Qi qi + Qi
where the ¢’s and Q’s are given by q; = vfef_l and Q; = (1— vi)rEf_l

We note that the condition for this possibility to be satisfied is that v;(e; + E;) > E;.

21
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Possibility 2: e;x; < E;x; This has strict inequalities and we can apply general results.
We have:

x; 9 and X' = Qi (29)

P g; + Qi q9; + Qi
where the q’s and Q’s are given by q; = (1 — Vi)elland Q; = V[Ef_l

1

We note that the condition for this possibility to be satisfied is that V;(e; + E;) > e;.
Possibility 3: ¢;x; = E;X; We must have

E; e;
* = ! d Ef = !
0Tt E O T gt E

Note that this solution in always admissible.

4.3 Optimal allocations with AEU subjects

Suppose now that the subject is AEU. This is defined by three probability bounds and
the alpha parameter.
Let us define the bounds on the convex set of possible probabilites by vy, vy, v3.

These three numbers characterise the model. Assume that they add up to less than 1
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(if they add up to 1 then AEU reduces to SEU). They bound a triangular area in the
Mashack-Machina Triangle.
As in the other cases the objective function is given by ??. The crucial point is the

values of the weights. Using our standard notation, where the ordered v’s we have

AEU = wafwyu(erxy) + wou(exxn) + (1 — wy — wy)u(esxs)] + (30)

(1 —a)[(1 —wy —ws)u(erx1) + wau(eaxz) + wsu(eszxs)]

This can be written as

AEU = [aw;+ (1 —a)(1—wy —ws)|u(erxy) + wou(erxs) + (31)

[a(1 —wy —wy) + (1 — a)ws]u(esxs)]

We note that this is exactly like the SEU case but with probabilities [aw; + (1 —
a)(1 —wy —ws)], wp and [w(1 — w; — wy) + (1 — a)ws] on the three outcomes. Note
that these add to 1, so we can apply our standard results. But note the idiosyncracy of
AEU: these "probabilities” depend upon the ordering. Following the same notation as

the CEU case, we have:

@1 = awi+ (1 —a)(1l—wy —ws)
@y = Wy (32)
@3 = a(l—w—wz)+(1—a)ws

Then we can write the AEU objective function in the standard format of equation

??. Hence the standard results hold.

4.3.1 Type1 problems

To save some writing let us introduce the notation V; to refer to the sum of the v’s

for not-i. Thatis, Vj = vy +v3, Vo = v +v3 and V3 = v; 4 vp. Or more generally
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Vi=10j+ .
If problem type is 1i then
if ejx; > exxx weight on x;is av; + (1 — «)(1 — V;) and weight on x; is v
if ejx; < exx; weight on x; is v; and weight on x is avy + (1 —a)(1 — Vj)

We need to consider three possibilities. We analyse Problem type 1i.
Possibility 1: ejx; > exxy  We have:

x]“-* = and x; = Ik (33)
qj + qx qj + qx

where the ¢’s are given by q; = [av; + (1 —«)(1 — Vj)]re]r.’1 and gq; = vje, !
We note that the condition for this possibility to be satisfied is that e;[av; + (1 —

a)(1—V;)] > exvg. It does not appear that this can be simplified .

Possibility 2: e;x; < exx;  This has strict inequalities and we can apply general results.

We have:

xj = i and xj = L (34)
q;j + gk q9; + qk

where the ¢’s are given by g; = v]fe]r._l and g = [aop + (1 —a) (1 — Vi)]7e,
We note that the condition for this possibility to be satisfied is that ex[avy + (1 —

a)(1 — Vi)] > ejv;. Again it does not appear that this can be simplified.

Possibility 3: ¢jx; = exxy  We must have

e €j
: £ _andxf = —!

]_€j+€k k ej-l—ek

Note that this solution in always admissible.

4.3.2 Type 2 problems

If problem type is 2i then
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if e;x; > E; X; weight on x; is av; + (1 — a)(1 — V;) and weight on X; is a(1 — v;) +
(1- @)V

if e;x; < E;X; weight on x; is x; is «(1 — V;) + (1 — a)v; and the weight on X; is
aVi+ (1—a)(1—1v;).

Again we can work with the unordered v’s. Let us introduce the notation V; to refer

to the sum of the v’s for not-i. Thatis, V] = vy + v3, Vo = v1 + v3 and V3 = v1 + 0».

Possibility 1: ¢;x; > E;X; Here we use again the notation X; to refer to the allocation
to not-i.

Here the weights on x; is av; + (1 — a)(1 — V;) and the weight on X; is a(1 — v;) +
(1-a)Vi.

In this case, the optimal allocations are

[av; + (1 —a)(1— V;)]7el !
C T ot (1= Ve a1 — o) + (1 — )V
a(1 = 07) + (1— ) Vi E/!

C T e+ A—w) (A — Ve k(1= o) + (- a)VE

Let us ask ourselves what is the condition such that the ranking is satisfied. We
need that e;x > E;(1 — x7). This gives us the condition that [xv; 4+ (1 —a)(1 — V;)]e; >

[2(1—v)) + (1 - a)VI]E:.

Possibility 2: ¢;x; < E;X; Here the weighton x;is (1 —V;) + (1 — a)v; and the weight
on X;isaV;+ (1 —a)(1 —v;).

In this case, the optimal allocations are

w(1 = Vi) + (1 a)o)e”
LT V) (Tl Vit (1)1 o) E] !
aVi+ (1-a)(1—v)/'E"!
C T V) + A w)old Vit (1-a)(1—o)'E] ]

Again let us ask ourselves what is the condition that the ranking is satisfied. Follow-

ing the logic as above we need that [aV; + (1 — a)(1 —v;)]E; > [a(1 —V;) + (1 — a)vj]e;.
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Possibility 3: ¢;x; = E;X; We must have

E;
£ _ dEf =
X =g andE;

€
e; + E;

Note that this solution in always admissible.

4.4 Optimal allocations with VEU subjects

A VEU maximizer is defined by three “adjusted” probabilities that incorporate the am-
biguity about the relative number of pairs of colours (i.e., ambiguity about the relative
number of colour 1 versus colour 2 balls and the ambiguity about the relative num-
ber of colour 2 versus colour 3 balls). These adjusted probabilities are defined as the
baseline prior probability plus or minus the adjustment for ambiguity.

Let us denote the baseline prior probabilities by v; as follows: v is the baseline
probability on colour 1, v, is the baseline probability on colour 2, v3 is the baseline
probability on colour 3. We define by w; the corresponding ordered baseline prior prob-
abilities. So we have

Vi = Wyae(c,i) fori =1,2,3 or wj = vy fori =1,2,3and c =1, ..., 6.

Let us write eq. (??) in terms of the ordered baseline prior probabilities

VEU = wyu(e1x1) +wou(exxy) +wsu(esxs) — o(|u(erxy) — u(exxa)| + |u(eaxz) —u(esxs)|)
(35)

Since we are considering an ordering, we can ignore the modulus. The (35) becomes

VEU = (wy — 8)u(e1xy) + wou(eaxz) + (w3 + 8)u(eszxs) (36)

Now we can easily define the “adjusted” probabilities and, for analogy to the AEU

case, we define them by @.

@0 = w1—0
@ = wp (37)
W3 = w3+
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Note that both the baseline prior probabilities and the “adjusted” probabilities sum up

to one.

4.4.1 Type1l problems

We follow the same notation of AEU. We refer to V; as the sum of the v’s for not-i. That
is, V1 = vp +v3, Vo = v1 + v3 and V3 = v1 + v2. Or more generally V; = v; + v;. If

problem type is 1i then

Problem type i j k weightonjife;x; > exxx weightonkifejx; > exxy
11 1 2 3 v—-94 U3

12 2 3 1 v3—96 (41

13 31 2 v1-6 Uy

1i i j k vj—=9 Uk

Problem type i j k weightonjife;x; <erxp weightonkifejx; < exy
11 1 2 3 v v3—0

12 2 3 1 uvs v1—0

13 31 2 m Uy — 0

1i i j ok v ()

We need to consider the three possibilities.

Possibility 1: ejx; > exx;  We have

(v; —o)rel !
J j
x; - S5 r—1 r r—1 (38)
(vj — )e]. + viep
r,r—1
x;{k — OkCk
(v; — (S)Ye]r.*1 +vfe; !

We note that the condition for this possibility to be satisfied is that e;(v; — J) > exvy.
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Possibility 2: ejx; < exxy We have

v],reij—l
x;'k - r—1 ] r—1 (39)
vi'e; + (vk (5)re].
(vp — 0)"el 1
x; = - ! (40)

We note that the condition for this possibility to be satisfied is that e (v — J) > e;v;.

Possibility 3: ejx; = exx;  We have

E.
xj = ——and x{ =
ej + E;

€j
e; + E;

Note that this solution in always admissible.

4.4.2 Type 2 problems

Let us consider the general case i, that is, allocations between i and not-i:
There are three possibilities:
Possibilty 1: e;x; > E;(1 — x;) = E; X;
Possibility 2: e;x; < E;(1 — x;) = E;X;
Possibility 3: e;x; = E;(1 — x;) = E; X;
Problem type i not-i weight on i if e;x; > E;X; weight on not-i if e;x; > E; X;

21 1 2and3 vy —96 1—v1+9
22 2 3and1l v, —¢ 1—vy490
23 3 land2 v3—9 1—v3+96
2i i jandk ©v;—6 1-v;+9

Problem type i not-i weight on i if e;x; < E;X; weight on not-i if e;x; < E;X;

21 1 2and3 1-Vi+6 Vi -4
22 2 3and1l 1—V,+96 Vo —46
23 3 land2 1—-V3+46 V3 —96
2i i jandk 1-V+6 Vi—6

We need to consider the three possibilities.
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Possibility 1: e;x; > E;X; Here the weights on x; is (v; — ¢) and the weight on X; is
(1—-v;+9)

The optimal allocations are:

) (Ui 5)ej”!
BT i— oy + (1— o+ o) E
v (1—v,-+5)f£f !

: (v —0)rel P+ (1 —v; 4+ 6)"El !

We note that the condition for this possibility to be satisfied is that (v; — d)e; >
(1 —9v;+9)E;.

Possibility 2: ¢;x; < E;X; Here the weights on x; is (1 — V; + ) and the weight on X;
is (V; — )

The optimal allocations are:

(1 o Vz + 5)1’67‘—1

1 (1= Vi+d)ref ™ 4 (V; — 8)'E[ !
X (Vi —o)E[
1 (1= Vi+d)ref ™ + (V; — 8)'E[ ™

We note that the condition for this possibility to be satisfied is that (1 — V; + d)e; <
(Vi = 6)E;.

Possibility 3: ¢;x; = E;X; We have

* E * €;
X; ) and X e+ E;

Note that this solution in always admissible.
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4.5 Optimal allocations with COM subjects

The preference functional for COM can be written as

COM = lap, +(A—a)(p,+ (A —p, —p,—p,)/
lap, + (L —a)(p,+ (1 —p, —p,—P,)/
[W(l—gl—32)+(1—w)(£3+(1—31

The probabilities on the three outcomes are [ap, + (1 —a)(p, +

)/3)] and [a(1—p,

(1—a)(p, +
py)/3)]

(1-p, -

_Ez)+

Again we need to consider all the possible cases.

451 Type1 problems

If problem type is 1i then

if ejx; > exxy weight on x; is and weight on x; is

if ejx; < exxy weight on x; is and weight on xj is.

3)Ju(erx1) + 41)
3)Ju(exx2) +
— P, — P5)/3)]u(esxs)
(1=p,—p,=13)/3)] [ap, +
(=P, + “‘Erﬁz—

Problem type | i | j | k | weighton jifejx; > exxp | weight on kif ejx; > exxy

1 1]2]3 ] ap,+(1-a) (”2’;2 4) 21— p,)+(1-a) <1+2£33—32)
12 2131 | ap,+(1-a) (”2%3 ”1) w(1—p)+(1—a) (”2%1*33)
13 3112 ap, + (1-a) <1+2%1 r, w(1— Pl) F(1—a) (1+2%2*B1>
1 ijklap+(1-u) (”2‘;‘&) K(1—p)+(1-a) (1+2r;k—m'>
Problem type | i | j | k | weighton jif ejx; < exx weight on k if ejx; < exx
11 123 a(l—p)+ 1 —a) (55 |ap,+ (1 -n) (F5E)
12 2031 al—p)+(1—a) <1+2g33—p1> ap, + (1—a) (1+2%1—33>
13 3112 a(l-p)+(1-a) (1+2%1—£2> ap, +(1—a) (1—1—2;;2—7171)
1i i|j|k]|al _Ek) b (1-a) <1+2’;;Vk) ap, C(—a) (1+2;;k P]-)

We need to consider the three possibilities.
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Possibility 1: ejx; > exxy  We have:

142p.— r
* (ocEj+(1—oc) ( +B3’ pk)) e]r._1
S 14+2p — r 1+2p —p \ \ "
oo () s (an oo ()
14+2p —p. r .
) (oc(l—Ej)Jr(l—zx)( = J)) e 1
X

(“Ef +(1-a) (M?_E}‘) ) r e+ <w(1 —p)+(1-a) <1+2%k—ry) ) e

We note that the condition for this possibility to be satisfied is that ¢; [ocE]. +(1—

0 (FHE)) > alnl - )+ (1w (F52))

Possibility 2: ejx; < exxy We have:

142p.—p r 1+2p, —p.\ \ "
. k)) e]r._1 + (ucEkJr (1—a) ( = ])) e !

We note that the condition for this possibility to be satisfied is that e, [szk + (1 -

0 (FHE)) > gl - p+ (- w) ()L

Possibility 3: ¢jx; = exxy  We must have

Note that this solution in always admissible.

4.5.2 Type 2 problems

As for the CARA case, let us use the notation P; to refer to the sum of the p’s for not-i.

Thatis, P; = p, +

p,+ Py Py =p +p,and Py =p +p,. Or more generally P; = p; + P,

There are three possibilities:
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Possibilty 1: e;x; > E;(1 — x;) = E;X;

POSSibﬂity 2:eix; < E,(l — xi) = E;X;

Possibility 3: e;x; = E;(1 — x;) = E;X;
Problem type | i | not-i weight on 7 if e;x; > E;X; | weight on not-i if ¢;x; > E; X;
21 1] 2and3 | ap, +(1-a) ("B a(l—p,) +(1-a) (4
22 2 3and1 | ap, + (1-a)(“B2) | a(l—p,)+(1-a)(—52)
23 3 1and2 [ap, + (1 - ) (") | a(l—p)+ (1 -a)(—532)
2i i |jandk | ap, +(1 ©(CH) la(l-p) +(1-a)(—5)
Problem type | i | not-i weight on i if e;x; < E; X weight on not-i if ¢;x; < E; X
21 1] 2and3 | a(l—Py) + (1 - a)( ) | aPy + (1 —a)(— )
22 2 [3and1 | a(1—Py)+(1—a)(CB2) | aPy + (1 - a)(— 532
23 3| 1and2 | a(1—Py)+(1—a)(— 5522 | aPsy+ (1 - oc)(l 2hE)
2i i |jandk | a(1—P)+(1-a)("5—) | ali+ (1-a)(~ 54
We need to consider the three possibilities
Possibility 1: e;x; > E;X; Here the weights on x; is ap, + (1-— zx)(H%_Bi) and the
weight on X;is a(1—p.) + (1 — zx)(liﬁzﬁg")
The optimal allocations are:
* (ap,+ (1 -0 (“5)) e
T (a0 g (a1 gy + (- () B
. (et =p)+ (1 -0 (H) B

(“Ei +(1- a)(%

%) et (w1 p) + (1=

17£'+Bi r r—1
2 )> E;

1+p.—P;

We note that the condition for this possibility to be satisfied is that [« p,+ (1—a)(—F—)]e; >

1—Bi+Pi
2

(1 —p)+ (1 - a)(

Possibility 2: e;x; < E;X; Here the weights on x;is a(1 — P;) + (1 —
o) (

the weight on X; is aP; + (1 —

The optimal allocations are:

—)]E;.

1-p+P;
2

).
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* (a0-P)+ -0 () o
xf o= : r
<a(1—Bi)+(1—tx)($)) ey (aBi_}_(l_a)(lf%JrBi)) Pl
(b + (1) (5) g
Xf =

(1 - )+ (1) (252)) 1+ (B4 (1— ) () B

We note that the condition for this possibility to be satisfied is that [a(1 — P;) + (1 —

“)(1+32i—2i)]ei < [aP; + (1 — a)(l—Eé+Bi)]Ei.

Possibility 3: ¢;x; = E;X; We have

* Ei

€
X: =
! e; + E;

e +E;

and X} =

Note that this solution in always admissible.
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